The USTC System for Voice Conversion Challenge 2016: Neural Network Based Approaches for Spectrum, Aperiodicity and F0 Conversion
نویسندگان
چکیده
This paper introduces the methods we adopt to build our system for the evaluation event of Voice Conversion Challenge (VCC) 2016. We propose to use neural network-based approaches to convert both spectral and excitation features. First, the generatively trained deep neural network (GTDNN) is adopted for spectral envelope conversion after the spectral envelopes have been pre-processed by frequency warping. Second, we propose to use a recurrent neural network (RNN) with long short-term memory (LSTM) cells for F0 trajectory conversion. In addition, we adopt a DNN for band aperiodicity conversion. Both internal tests and formal VCC evaluation results demonstrate the effectiveness of the proposed methods.
منابع مشابه
Emotional Voice Conversion Using Neural Networks with Different Temporal Scales of F0 based on Wavelet Transform
An artificial neural network is one of the most important models for training features of voice conversion (VC) tasks. Typically, neural networks (NNs) are very effective in processing nonlinear features, such as mel cepstral coefficients (MCC) which represent the spectrum features. However, a simple representation for fundamental frequency (F0) is not enough for neural networks to deal with an...
متن کاملEmotional voice conversion using neural networks with arbitrary scales F0 based on wavelet transform
An artificial neural network is an important model for training features of voice conversion (VC) tasks. Typically, neural networks (NNs) are very effective in processing nonlinear features, such as Mel Cepstral Coefficients (MCC), which represent the spectrum features. However, a simple representation of fundamental frequency (F0) is not enough for NNs to deal with emotional voice VC. This is ...
متن کاملEmotional Voice Conversion with Adaptive Scales F0 Based on Wavelet Transform Using Limited Amount of Emotional Data
Deep learning techniques have been successfully applied to speech processing. Typically, neural networks (NNs) are very effective in processing nonlinear features, such as mel cepstral coefficients (MCC), which represent the spectrum features in voice conversion (VC) tasks. Despite these successes, the approach is restricted to problems with moderate dimension and sufficient data. Thus, in emot...
متن کاملUsing Context-based Statistical Models to Promote the Quality of Voice Conversion Systems
This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کامل